Go语言复合类型map的基本操作

插入新键值对

面对一个非 nil 的 map 类型变量,我们可以在其中插入符合 map 类型定义的任意新键值对。插入新键值对的方式很简单,我们只需要把 value 赋值给 map 中对应的 key 就可以了:


m := make(map[int]string)
m[1] = "value1"
m[2] = "value2"
m[3] = "value3"

Go 运行时会负责 map 变量内部的内存管理,因此除非是系统内存耗尽,我们可以不用担心向 map 中插入新数据的数量和执行结果。

如果我们插入新键值对的时候,某个 key 已经存在于 map 中了,那我们的插入操作就会用新值覆盖旧值:


m := map[string]int {
  "key1" : 1,
  "key2" : 2,
}

m["key1"] = 11 // 11会覆盖掉"key1"对应的旧值1
m["key3"] = 3  // 此时m为map[key1:11 key2:2 key3:3]

获取键值对数量

想知道当前 map 类型变量中已经建立了多少个键值对,那我们可以怎么做呢?和切片一样,map 类型也可以通过内置函数 len,获取当前变量已经存储的键值对数量:


m := map[string]int {
  "key1" : 1,
  "key2" : 2,
}

fmt.Println(len(m)) // 2
m["key3"] = 3  
fmt.Println(len(m)) // 3

查找和数据读取

和写入相比,map 类型更多用在查找和数据读取场合。


m := make(map[string]int)
v := m["key1"]

第二行代码在语法上好像并没有什么不当之处,但其实通过这行语句,我们还是无法确定键 key1 是否真实存在于 map 中。这是因为,当我们尝试去获取一个键对应的值的时候,如果这个键在 map 中并不存在,我们也会得到一个值,这个值是 value 元素类型的零值。

Go 语言的 map 类型支持通过用一种名为“comma ok”的惯用法,进行对某个 key 的查询。接下来我们就用“comma ok”惯用法改造一下上面的代码:


m := make(map[string]int)
v, ok := m["key1"]
if !ok {
    // "key1"不在map中
}

// "key1"在map中,v将被赋予"key1"键对应的value

这里我们通过了一个布尔类型变量 ok,来判断键“key1”是否存在于 map 中。如果存在,变量 v 就会被正确地赋值为键“key1”对应的 value。一定要记住:在 Go 语言中,请使用“comma ok”惯用法对 map 进行键查找和键值读取操作。

删除数据

在 Go 中,我们需要借助内置函数 delete 来从 map 中删除数据。使用 delete 函数的情况下,传入的第一个参数是我们的 map 类型变量,第二个参数就是我们想要删除的键。


m := map[string]int {
  "key1" : 1,
  "key2" : 2,
}

fmt.Println(m) // map[key1:1 key2:2]
delete(m, "key2") // 删除"key2"
fmt.Println(m) // map[key1:1]

delete 函数是从 map 中删除键的唯一方法。即便传给 delete 的键在 map 中并不存在,delete 函数的执行也不会失败,更不会抛出运行时的异常。

遍历 map 中的键值数据

在 Go 中,遍历 map 的键值对只有一种方法,那就是像对待切片那样通过 for range 语句对 map 数据进行遍历。


package main
  
import "fmt"

func main() {
    m := map[int]int{
        1: 11,
        2: 12,
        3: 13,
    }

    fmt.Printf("{ ")
    for k, v := range m {
        fmt.Printf("[%d, %d] ", k, v)
    }
    fmt.Printf("}
")
}

通过 for range 遍历 map 变量 m,每次迭代都会返回一个键值对,其中键存在于变量 k 中,它对应的值存储在变量 v 中。

对同一 map 做多次遍历的时候,每次遍历元素的次序都不相同。这是 Go 语言 map 类型的一个重要特点,也是很容易让 Go 初学者掉入坑中的一个地方。所以这里你一定要记住:程序逻辑千万不要依赖遍历 map 所得到的的元素次序。

map 的内部实现

Go 运行时使用一张哈希表来实现抽象的 map 类型。运行时实现了 map 类型操作的所有功能,包括查找、插入、删除等。在编译阶段,Go 编译器会将 Go 语法层面的 map 操作,重写成运行时对应的函数调用。大致的对应关系是这样的:


// 创建map类型变量实例
m := make(map[keyType]valType, capacityhint)   m := runtime.makemap(maptype, capacityhint, m)

// 插入新键值对或给键重新赋值
m["key"] = "value"   v := runtime.mapassign(maptype, m, "key") v是用于后续存储value的空间的地址

// 获取某键的值 
v := m["key"]        v := runtime.mapaccess1(maptype, m, "key")
v, ok := m["key"]    v, ok := runtime.mapaccess2(maptype, m, "key")

// 删除某键
delete(m, "key")     runtime.mapdelete(maptype, m, “key”)

这是 map 类型在 Go 运行时层实现的示意图:


和切片的运行时表示图相比,map 的实现示意图显然要复杂得多,我们重点关注一个 map 变量在初始状态、进行键值对操作后,以及在并发场景下的 Go 运行时层的实现原理。

1、初始状态

从图中我们可以看到,与语法层面 map 类型变量(m)一一对应的是 *runtime.hmap 的实例,即 runtime.hmap 类型的指针,也就是我们前面在讲解 map 类型变量传递开销时提到的 map 类型的描述符。hmap 类型是 map 类型的头部结构(header),它存储了后续 map 类型操作所需的所有信息,包括:


真正用来存储键值对数据的是桶,也就是 bucket,每个 bucket 中存储的是 Hash 值低 bit 位数值相同的元素,默认的元素个数为 BUCKETSIZE(值为 8,Go 1.17 版本中在 $GOROOT/src/cmd/compile/internal/reflectdata/reflect.go 中定义,与 runtime/map.go 中常量 bucketCnt 保持一致)。当某个 bucket(比如 buckets[0]) 的 8 个空槽 slot)都填满了,且 map 尚未达到扩容的条件的情况下,运行时会建立 overflow bucket,并将这个 overflow bucket 挂在上面 bucket(如 buckets[0])末尾的 overflow 指针上,这样两个 buckets 形成了一个链表结构,直到下一次 map 扩容之前,这个结构都会一直存在。

从图中我们可以看到,每个 bucket 由三部分组成,从上到下分别是 tophash 区域、key 存储区域和 value 存储区域。

tophash 区域:

当我们向 map 插入一条数据,或者是从 map 按 key 查询数据的时候,运行时都会使用哈希函数对 key 做哈希运算,并获得一个哈希值(hashcode)。这个 hashcode 非常关键,运行时会把 hashcode“一分为二”来看待,其中低位区的值用于选定 bucket,高位区的值用于在某个 bucket 中确定 key 的位置。如下图:


每个 bucket 的 tophash 区域其实是用来快速定位 key 位置的,这样就避免了逐个 key 进行比较这种代价较大的操作。

key 存储区域:

tophash 区域下面是一块连续的内存区域,存储的是这个 bucket 承载的所有 key 数据。运行时在分配 bucket 的时候需要知道 key 的 Size。那么运行时是如何知道 key 的 size 的呢?当我们声明一个 map 类型变量,比如 var m map[string]int 时,Go 运行时就会为这个变量对应的特定 map 类型,生成一个 runtime.maptype 实例。如果这个实例已经存在,就会直接复用。maptype 实例的结构是这样的:


type maptype struct {
    typ        _type
    key        *_type
    elem       *_type
    bucket     *_type // internal type representing a hash bucket
    keysize    uint8  // size of key slot
    elemsize   uint8  // size of elem slot
    bucketsize uint16 // size of bucket
    flags      uint32
} 

这个实例包含了我们需要的 map 类型中的所有"元信息"。我们前面提到过,编译器会把语法层面的 map 操作重写成运行时对应的函数调用,这些运行时函数都有一个共同的特点,那就是第一个参数都是 maptype 指针类型的参数。Go 运行时就是利用 maptype 参数中的信息确定 key 的类型和大小的。map 所用的 hash 函数也存放在 maptype.key.alg.hash(key, hmap.hash0) 中。同时 maptype 的存在也让 Go 中所有 map 类型都共享一套运行时 map 操作函数,而不是像 C++ 那样为每种 map 类型创建一套 map 操作函数,这样就节省了对最终二进制文件空间的占用。

value 存储区域:

这个区域存储的是 key 对应的 value。和 key 一样,这个区域的创建也是得到了 maptype 中信息的帮助。Go 运行时采用了把 key 和 value 分开存储的方式,而不是采用一个 kv 接着一个 kv 的 kv 紧邻方式存储,这带来的其实是算法上的复杂性,但却减少了因内存对齐带来的内存浪费。

我们以 map[int8]int64 为例,看看下面的存储空间利用率对比图:


当前 Go 运行时使用的方案内存利用效率很高,而 kv 紧邻存储的方案在 map[int8]int64 这样的例子中内存浪费十分严重,它的内存利用率是 72/128=56.25%,有近一半的空间都浪费掉了。

如果 key 或 value 的数据长度大于一定数值,那么运行时不会在 bucket 中直接存储数据,而是会存储 key 或 value 数据的指针。目前 Go 运行时定义的最大 key 和 value 的长度是这样的:


// $GOROOT/src/runtime/map.go
const (
    maxKeySize  = 128
    maxElemSize = 128
)

map 扩容

map 会对底层使用的内存进行自动管理。因此,在使用过程中,当插入元素个数超出一定数值后,map 一定会存在自动扩容的问题,也就是怎么扩充 bucket 的数量,并重新在 bucket 间均衡分配数据的问题。

Go 运行时的 map 实现中引入了一个 LoadFactor(负载因子),当 count > LoadFactor * 2^B 或 overflow bucket 过多时,运行时会自动对 map 进行扩容。

这两方面原因导致的扩容,在运行时的操作其实是不一样的。如果是因为 overflow bucket 过多导致的“扩容”,实际上运行时会新建一个和现有规模一样的 bucket 数组,然后在 assign 和 delete 时做排空和迁移。

map 与并发

从上面的实现原理来看,充当 map 描述符角色的 hmap 实例自身是有状态的(hmap.flags),而且对状态的读写是没有并发保护的。所以说 map 实例不是并发写安全的,也不支持并发读写。如果我们对 map 实例进行并发读写,程序运行时就会抛出异常。你可以看看下面这个并发读写 map 的例子:


package main

import (
    "fmt"
    "time"
)

func doIteration(m map[int]int) {
    for k, v := range m {
        _ = fmt.Sprintf("[%d, %d] ", k, v)
    }
}

func doWrite(m map[int]int) {
    for k, v := range m {
        m[k] = v + 1
    }
}

func main() {
    m := map[int]int{
        1: 11,
        2: 12,
        3: 13,
    }

    go func() {
        for i := 0; i < 1000; i++ {
            doIteration(m)
        }
    }()

    go func() {
        for i := 0; i < 1000; i++ {
            doWrite(m)
        }
    }()

    time.Sleep(5 * time.Second)
}

我们仅仅是进行并发读,map 是没有问题的。而且,Go 1.9 版本中引入了支持并发写安全的 sync.Map 类型,可以在并发读写的场景下替换掉 map。

考虑到 map 可以自动扩容,map 中数据元素的 value 位置可能在这一过程中发生变化,所以 Go 不允许获取 map 中 value 的地址,这个约束是在编译期间就生效的。

展开阅读全文

页面更新:2024-04-22

标签:类型   操作   遍历   变量   函数   实例   元素   内存   区域   语言   数据

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2008-2024 All Rights Reserved. Powered By bs178.com 闽ICP备11008920号-3
闽公网安备35020302034844号

Top