一文弄清楚Golang内存逃逸

1. 为什么要了解内存逃逸

c/c++的programmer对于堆内存、栈内存一定非常熟悉,以为内存管理完全由使用者自己管理。Go语言的内存管理完全由Go的runtime接管,那么是不程序员就完全不用care变量是如何分配的呢?

2. 什么是内存逃逸

Go语言中局部的非指针变量通常是不受GC管理的,这种Go变量的内存分配称为“栈分配”,处于goroutine自己的栈中。由于Go编译器无法确定其生命周期,因此无法以这种方式分配内存的Go变量会逃逸到堆上,被称为 内存逃逸

3. 哪些情况下会发生内存逃逸

先来说一下通过go编译器查看内存逃逸方式go build -gcflags=-m xxx.go

package main

type User struct {
	Namestring
}

func foo(s string) *User {
   u := new(User)
   u.Name= s
   return u // 方法内局部变量返回,逃逸
}

func main() {
   user := foo("hui")
   user.Name= "dev"
}

//# command-line-arguments
//./escape.go:7:6: can inline foo
//./escape.go:13:6: can inline main
//./escape.go:14:13: inlining call to foo
//./escape.go:7:10: leaking param: s
//./escape.go:8:10: new(User) escapes to heap
//./escape.go:14:13: new(User) does not escape

package main

import "fmt"

func main() {
	name := "devhui"
	fmt.Println(name)
}

//# command-line-arguments
//./escape_02.go:7:13: inlining call to fmt.Println
//./escape_02.go:7:13: name escapes to heap
//./escape_02.go:7:13: []interface {}{...} does not escape
//:1: leaking param content: .this

很多函数的参数为interface{} 空接口类型,这些都会造成逃逸。比如

func Printf(format string, a ...interface{}) (n int, err error)
func Sprintf(format string, a ...interface{}) string
func Fprint(w io.Writer, a ...interface{}) (n int, err error)
func Print(a ...interface{}) (n int, err error)
func Println(a ...interface{}) (n int, err error)
复制代码

编译期间很难确定其参数的具体类型,也能产生逃逸

func main() {
	fmt.Println("hello 逃逸")
}
/* 逃逸日志分析
./main.go:5:6: can inline main
./main.go:6:13: inlining call to fmt.Println
./main.go:6:14: "hello 逃逸" escapes to heap
./main.go:6:13: []interface {} literal does not escape
*/
package main

func main() {
	s := make([]int, 1000, 1000)
	for index, _ := range s {
		s[index] = index

	s1 := make([]int, 10000, 10000)
	for index, _ := range s1 {
		s1[index] = index
	}
}

逃逸分析:

./escape_03.go:4:11: make([]int, 1000, 1000) does not escape
./escape_03.go:9:12: make([]int, 10000, 10000) escapes to heap

s足够在栈空间分配没有逃逸;s1空间不够在栈内分配发生了逃逸。

package main

func main() {
	s := make([]int, 0, 1000)
	for index, _ := range s {
		s[index] = index
	}

	num := 1000
	s1 := make([]int, 0, num)
	for index, _ := range s1 {
		s1[index] = index
	}
}

逃逸分析:

./escape_05.go:4:11: make([]int, 0, 1000) does not escape
./escape_05.go:10:12: make([]int, 0, num) escapes to heap

s分配时cap是一个常量没有发生逃逸,s1的cap是一个变量发生了逃逸。

func Increase() func() int {
	n := 0
	return func() int {
		n++
		return n
	}
}

func main() {
	in := Increase()
	fmt.Println(in()) // 1
	fmt.Println(in()) // 2
}

//./escape_04.go:6:2: moved to heap: n
//./escape_04.go:7:9: func literal escapes to heap
//./escape_04.go:7:9: func literal does not escape
//./escape_04.go:15:16: int(~R0) escapes to heap
//./escape_04.go:15:13: []interface {}{...} does not escape
//./escape_04.go:16:16: int(~R0) escapes to heap
//./escape_04.go:16:13: []interface {}{...} does not escape
//:1: leaking param content: .this

4. 如何减少逃逸

  1. 局部切片尽可能确定长度或容量
import "testing"

// sliceEscape 发生逃逸,在堆上申请切片
func sliceEscape() {
	number := 10
	s1 := make([]int, 0, number)
	for i := 0; i < number; i++ {
		s1 = append(s1, i)
	}
}

// sliceNoEscape 不逃逸,限制在栈上
func sliceNoEscape() {
	s1 := make([]int, 0, 10)
	for i := 0; i < 10; i++ {
		s1 = append(s1, i)
	}
}

func BenchmarkSliceEscape(b *testing.B) {
	for i := 0; i < b.N; i++ {
		sliceEscape()
	}
}

func BenchmarkSliceNoEscape(b *testing.B) {
	for i := 0; i < b.N; i++ {
		sliceNoEscape()
	}
}
BenchmarkSliceEscape
BenchmarkSliceEscape-10      	53271513	        22.09 ns/op
BenchmarkSliceNoEscape
BenchmarkSliceNoEscape-10    	187033111	         6.458 ns/op
  1. 合理选择返回值、返回指针
package escape_bench_02

import "testing"

type St struct {
	arr [100]int
}

func retValue() St {
	var st St
	return st
}

func retPtr() *St {
	var st St
	return &st
}

func BenchmarkRetValue(b *testing.B) {
	for i := 0; i < b.N; i++ {
		_ = retValue()
	}
}

func BenchmarkRetPtr(b *testing.B) {
	for i := 0; i < b.N; i++ {
		_ = retPtr()
	}
}
BenchmarkRetValue-10            34714424                34.45 ns/op            0 B/op          0 allocs/op
BenchmarkRetPtr-10               8038676               145.3 ns/op           896 B/op          1 allocs/op

可以看到返回值更快且没有发生堆内存的分配。

  1. 小的拷贝好过引用
package escape_bench_03

import "testing"

const capacity = 1024

func arrayFibonacci() [capacity]int {
	var d [capacity]int
	for i := 0; i < len(d); i++ {
		if i <= 1 {
			d[i] = 1
			continue
		}
		d[i] = d[i-1] + d[i-2]
	}
	return d
}

func sliceFibonacci() []int {
	d := make([]int, capacity)
	for i := 0; i < len(d); i++ {
		if i <= 1 {
			d[i] = 1
			continue
		}
		d[i] = d[i-1] + d[i-2]
	}
	return d
}

func BenchmarkArray(b *testing.B) {
	for i := 0; i < b.N; i++ {
		_ = arrayFibonacci()
	}
}

func BenchmarkSlice(b *testing.B) {
	for i := 0; i < b.N; i++ {
		_ = sliceFibonacci()
	}
}
BenchmarkArray-10         346110              2986 ns/op               0 B/op          0 allocs/op
BenchmarkSlice-10         389745              2849 ns/op            8192 B/op          1 allocs/op

那么多大的变量才算是小变量呢? 对 Go 编译器而言,超过一定大小的局部变量将逃逸到堆上,不同 Go 版本的大小限制可能不一样。一般是 < 64KB,局部变量将不会逃逸到堆上。

  1. 返回值使用确定的类型
package escape_bench_04

import "testing"

const capacity = 1024

func returnArray() [capacity]int {
	var arr [capacity]int
	for i := 0; i < len(arr); i++ {
		arr[i] = 1000
	}
	return arr
}

func returnInterface() interface{} {
	var arr [capacity]int
	for i := 0; i < len(arr); i++ {
		arr[i] = 1000
	}
	return arr
}

func BenchmarkReturnArray(b *testing.B) {
	for i := 0; i < b.N; i++ {
		_ = returnArray()
	}
}

func BenchmarkReturnInterface(b *testing.B) {
	for i := 0; i < b.N; i++ {
		_ = returnInterface()
	}
}
展开阅读全文

页面更新:2024-03-07

标签:内存   编译器   指针   变量   局部   分配   对象   大小   发生   测试

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2008-2024 All Rights Reserved. Powered By bs178.com 闽ICP备11008920号-3
闽公网安备35020302034844号

Top