国际关注!吉林大学成功解决这“两大难题”,成果最新登顶《科学》!

近日,吉林大学材料科学与工程学院张立军教授与华东理工大学、德国波茨坦大学、华中科技大学的合作者合作,实验研究和理论计算相结合,在反式钙钛矿太阳能电池空穴传输层设计方面取得重要进展。合作研究成果以“Minimizing buried interfacial defects for efficient inverted perovskite solar cells”为题在国际顶级学术期刊Science正式发表。

有机空穴传输材料作为一类重要的有机半导体材料,被广泛应用于有机发光二极管和新型太阳能电池器件。有机半导体领域普遍认为n型的电子传输材料发展相对滞后,而p型的空穴传输材料则相对成熟。在光电器件应用中有机空穴传输材料仍面临诸多问题,其中最突出的问题是其低迁移率特性限制了电荷输运性能。

为解决这个挑战问题,合作团队实验研究和理论计算相结合,提出在空穴传输分子上创新引入氰基膦酸单元,发展双亲性小分子空穴传输材料(如图1A),通过动态自组装构筑有序、超薄、表面超浸润薄膜(图1B-E),从而解决了器件应用中载流子输运和界面缺陷控制两大难题(图1F-H)。

图1 “双亲性”锚定自组装有机空穴传输材料和“双层”膜结构提升表面浸润性,提高钙钛矿光活性层薄膜质量

合作团队通过原子尺度的第一性原理材料模拟揭示了钙钛矿深能级缺陷的协同钝化机理:氰基的引入能够进一步加强原有膦酸基团对钙钛矿表面铅相关深能级缺陷的钝化能力,形成一种“螯合”的协同钝化晶体构型(图2A)。电子局域函数的分布图表明了氰基与膦酸基团与缺陷铅原子明显的成键行为(图2C),这种对缺陷铅原子周围八面体配位环境的补齐是双亲性分子显示出优秀缺陷钝化能力的主要原因。投影态密度的计算结果显示深缺陷能级通过与双亲性分子的成键钝化作用移动到了导带与价带内部(图2B)。

图2 氰基膦酸基团钝化钙钛矿晶体表面深能级缺陷

基于这种新型有机空穴传输材料制备的反式结构钙钛矿太阳电池在第三方机构的认证效率达到25.39%(图3A),为目前该类太阳电池的最高认证效率(图3B)。此外,该新型有机空穴传输材料良好的浸润性十分有利于制备大面积的器件,1 cm2的器件和10 cm2的模组(图3C)分别实现了23.4%和22.0%的效率。

图3 新型有机空穴传输材料提升太阳电池器件性能

吉林大学博士生王啸宇为论文共同第一作者,吉林大学张立军教授为论文共同通讯作者。该工作得到了国家杰出青年科学基金等项目的资助,以及吉林大学高性能计算中心提供的计算资源支持。

张立军,教授,博士研究生导师。长期从事材料计算模拟与新材料设计研究工作,基于高通量材料计算与人工智能机器学习算法结合的思路,发展了具有自主知识产权的材料设计新方法与软件JAMIP ,为国内外同行开展新材料设计研究提供了有效工具;聚焦半导体光电材料,开展新材料设计与光电性能调控研究,多个从理论上设计的新材料与新性能调控策略得到实验证实,取得了对半导体光电材料与器件领域有指引作用的创新成果。

拓展阅读:

吉林大学材料科学与工程学院具有学科齐全、理工结合、基础研究与工程应用并重等特点;人才培养、科学研究和服务社会以立足东北,面向汽车、轨道交通制造业为特色。“材料科学与工程”学科ESI排名2004年起进入全球前1%,2014年起进入全球前1‰,2017年被列入教育部首批“双一流”建设学科。现有材料物理专业材料类专业,材料类专业由材料科学与工程、无机非金属材料工程和材料成型及控制工程3个专业构成,其中材料物理专业、材料成型及控制工程专业为国家级一流本科专业建设点

关注"吉大招生"头条号,获取关于国家985、211工程,双一流建设高校——吉林大学的最新精彩资讯!

本文素材来源:吉林大学材料科学与工程学院官网、吉大招生等

展开阅读全文

页面更新:2024-03-04

标签:吉林大学   空穴   基团   能级   材料科学   双亲   新材料   器件   缺陷   难题   成果   材料   科学   国际   最新

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2008-2024 All Rights Reserved. Powered By bs178.com 闽ICP备11008920号-3
闽公网安备35020302034844号

Top