Linux下虚拟内存与物理内存之间的关系

在介绍 HugePages 之前,我们先来回顾一下 Linux 下 虚拟内存物理内存 之间的关系。

嵌入式进阶教程分门别类整理好了,看的时候十分方便,由于内容较多,这里就截取一部分图吧。

需要的朋友私信【内核】即可领取

我们通过图1描述虚拟内存地址转换成物理内存地址的过程:

如 图1 所示,页表 保存的是虚拟内存地址与物理内存地址的映射关系,MMU页表 中找到虚拟内存地址所映射的物理内存地址,然后把物理内存地址提交给 CPU,这个过程与 Hash 算法相似。

内存映射是以内存页作为单位的,通常情况下,一个内存页的大小为 4KB(如图1所示),所以称为 分页机制

一、内存映射

我们来看看在 64 位的 Linux 系统中(英特尔 x64 CPU),虚拟内存地址转换成物理内存地址的过程,如图2:

从图2可以看出,Linux 只使用了 64 位虚拟内存地址的前面 48 位(0 ~ 47倍),并且 Linux 把这 48 虚拟内存地址分为 5 个部分,如下:

把 图1 中的 页表 分为 4 级:页全局目录页上级目录页中间目录页表 目的是为了减少内存消耗(思考下为什么可以减少内存消耗)。

注意:页全局目录、页上级目录、页中间目录 和 页表 都占用一个 4KB 大小的物理内存页,由于 64 位内存地址占用 8 个字节,所以一个 4KB 大小的物理内存也可以容纳 512 个 64 位内存地址。

另外,CPU 有个名为 CR3 的寄存器,用于保存 页全局目录 的起始物理内存地址(如图2所示)。所以,虚拟内存地址转换成物理内存地址的过程如下:

二、HugePages 原理

上面介绍了以 4KB 的内存页作为内存映射的单位,但有些场景我们希望使用更大的内存页作为映射单位(如 2MB)。使用更大的内存页作为映射单位有如下好处:

Tips:TLB 是一块高速缓存,TLB 缓存虚拟内存地址与其映射的物理内存地址。MMU 首先从 TLB 查找内存映射的关系,如果找到就不用回溯查找页表。否则,只能根据虚拟内存地址,去页表中查找其映射的物理内存地址。

因为映射的内存页越大,所需要的 页表 就越小(很容易理解);页表 越小,TLB 失效的情况就越少。

使用大于 4KB 的内存页作为内存映射单位的机制叫 HugePages,目前 Linux 常用的 HugePages 大小为 2MB 和 1GB,我们以 2MB 大小的内存页作为例子。

要映射更大的内存页,只需要增加偏移量部分,如 图3 所示:

如 图3 所示,现在把偏移量部分扩展到 21 位(页表部分被覆盖了,21 位能够表示的大小范围为 0 ~ 2MB),所以 页中间目录 直接指向映射的 物理内存页地址

这样,就可以减少 页表 部分的内存消耗。由于内存映射关系变少,所以 TLB 失效的情况也会减少。

三、HugePages 使用

了解了 HugePages 的原理后,我们来介绍一下怎么使用 HugePages。

HugePages 的使用不像普通内存申请那么简单,而是需要借助 Hugetlb文件系统 来创建,下面将会介绍 HugePages 的使用步骤:

1. 挂载 Hugetlb 文件系统

Hugetlb 文件系统是专门为 HugePages 而创造的,我们可以通过以下命令来挂载一个 Hugetlb 文件系统:

$ mkdir /mnt/huge$ mount none /mnt/huge -t hugetlbfs

执行完上面的命令后,我们就在 /mnt/huge 目录下挂载了 Hugetlb 文件系统。

2. 声明可用 HugePages 数量

要使用 HugePages,首先要向内核声明可以使用的 HugePages 数量。/proc/sys/vm/nr_hugepages 文件保存了内核可以使用的 HugePages 数量,我们可以使用以下命令设置新的可用 HugePages 数量:

$ echo 20 > /proc/sys/vm/nr_hugepages

上面命令设置了可用的 HugePages 数量为 20 个(也就是 20 个 2MB 的内存页)。

3. 编写申请 HugePages 的代码

要使用 HugePages,必须使用 mmap 系统调用把虚拟内存映射到 Hugetlb 文件系统中的文件,如下代码:

#include #include #include #include #define MAP_LENGTH (10*1024*1024) // 10MBint main(){    int fd;    void * addr;    // 1. 创建一个 Hugetlb 文件系统的文件    fd = open("/mnt/huge/hugepage1", O_CREAT|O_RDWR);    if (fd < 0) {        perror("open()");        return -1;    }    // 2. 把虚拟内存映射到 Hugetlb 文件系统的文件中    addr = mmap(0, MAP_LENGTH, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);    if (addr == MAP_FAILED) {        perror("mmap()");        close(fd);        unlink("/mnt/huge/hugepage1");        return -1;    }    strcpy(addr, "This is HugePages example...");    printf("%s
", addr);    // 3. 使用完成后,解除映射关系    munmap(addr, MAP_LENGTH);    close(fd);    unlink("/mnt/huge/hugepage1");    return 0; }

编译上面的代码并且执行,如果没有问题,将会输出以下信息:

   This is HugePages example...

四、总结

本文主要介绍了 HugePages 的原理和使用,虽然 HugePages 有很多优点,但也有其不足的地方。比如调用 fork 系统调用创建子进程时,内核使用了 写时复制 的技术,在父子进程内存发生改变时,需要复制更大的内存页,从而影响性能。

导读-最新发表 - 我爱内核网 - 构建全国最权威的内核技术交流分享论坛

Linux下虚拟内存与物理内存之间的关系 - 论坛 - 我爱内核网 - 构建全国最权威的内核技术交流分享论坛

展开阅读全文

页面更新:2024-06-16

标签:物理   内存   个位   全局   文件系统   内核   索引   大小   关系   地址   目录

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2008-2024 All Rights Reserved. Powered By bs178.com 闽ICP备11008920号-3
闽公网安备35020302034844号

Top