手撕SVM(公式推导+代码实现)(三)

前言

前面我们进行了很多的理论性研究,下面我们开始用代码进行实现。

编程求解线性SVM

import matplotlib.pyplot as plt
import numpy as np

#读取数据
def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines(): #逐行读取,滤除空格等
        lineArr = line.strip().split('	')
        dataMat.append([float(lineArr[0]),float(lineArr[1])]) #添加数据
        labelMat.append(float(lineArr[2])) #添加标签
    return dataMat,labelMat

#数据可视化
def showDataSet(dataMat,labelMat):
    data_plus = []
    data_minus = []
    for i in range(len(dataMat)):
        if labelMat[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus) #转换为numpy矩阵
    data_minus_np = np.array(data_minus)#转换为numpy矩阵
    plt.scatter(np.transpose(data_plus_np)[0],np.transpose(data_plus_np)[1]) #正样本
    plt.scatter(np.transpose(data_minus_np)[0],np.transpose(data_minus_np)[1]) #负样本
    plt.show()

dataMat,labelMat = loadDataSet('testSet.txt')
showDataSet(dataMat,labelMat)
手撕SVM(公式推导+代码实现)(三)

这个数据集显然线性可分。

应用简化版SMO算法处理小规模数据集

手撕SVM(公式推导+代码实现)(三)

import random

def selectJrand(i,m):
    j=i
    while(j==i): #选择一个不等于i的j
        j = int(random.uniform(0,m))
    return j

def clipAlpha(aj,H,L):
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

dataArr,labelArr  =loadDataSet('testSet.txt')
labelArr

[-1.0,
-1.0,
1.0,
-1.0,
1.0,
1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
-1.0,
-1.0,
1.0,
-1.0,
1.0,
1.0,
-1.0,
1.0,
-1.0,
-1.0,
-1.0,
1.0,
-1.0,
-1.0,
1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
1.0,
1.0,
1.0,
1.0,
-1.0,
1.0,
-1.0,
-1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
-1.0,
1.0,
1.0,
-1.0,
-1.0,
1.0,
1.0,
-1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
1.0,
-1.0,
1.0,
-1.0,
-1.0,
1.0,
1.0,
1.0,
-1.0,
1.0,
1.0,
-1.0,
-1.0,
1.0,
-1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
1.0,
-1.0,
1.0,
1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
-1.0,
-1.0,
-1.0]

data = np.mat(dataArr)
data[2,:]
matrix([[ 7.55151, -1.58003]])

可以看出来,这里使用的类别标签是-1和1

SMO算法的伪代码:

创建一个alpha向量并将其初始化为 0 向量 
当迭代次数小于最大迭代次数时 (外循环) 
    对数据集中的每个数据向量 (内循环):
    如果该数据向量可以被优化:
        随机选择另外一个数据向量
        同时优化这两个向量
        如果两个向量都不能被优化, 退出内循环
如果所有向量都没被优化, 增加迭代数目, 继续下一次循环
#简化版SMO算法
def smoSimple(dataMatIn,classLabels,C,toler,maxIter):
    dataMatrix = np.mat(dataMatIn); labelMat = np.mat(classLabels).transpose()
    b = 0; m,n = np.shape(dataMatrix)
    alphas = np.mat(np.zeros((m,1)))#初始化alpha参数,设置为0
    iterSmo = 0 #初始化迭代次数
    while(iterSmo < maxIter):
        alphaPairsChanged = 0#用于记录alpha是否已经进行优化
        #步骤1. 计算误差Ei
        for i in range(m):
            fXi = float(np.multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > -toler) and (alphas[i] > 0)):
                j = selectJrand(i,m)
                #步骤1. 计算误差Ej
                fXj = float(np.multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                #保存更新前的alpha值,使用浅拷贝
                alphaIold = alphas[i].copy()
                alphaJold = alphas[j].copy()
                #步骤2:计算上界H和下界L
                if (labelMat[i] != labelMat[j]):
                    L = max(0,alphas[j] - alphas[i])
                    H = min(C,C + alphas[j] - alphas[i])
                else:
                    L = max(0,alphas[j] + alphas[i] - C)
                    H = min(C,alphas[j] + alphas[i])
                if L==H: print("L==H"); continue
                #步骤3:计算eta
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >=0 : print("eta>=0");continue
                #步骤4:更新alpha_j
                alphas[j] -= labelMat[j]*(Ei-Ej)/eta
                #步骤5:修剪alpha_j
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001) : print("j not moving enough") ; continue
                #步骤6:更新alpha_i
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])
                #步骤7:更新b_1和b_2
                b1 = b - Ei - labelMat[i]*(alphas[i] - alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T 
                - labelMat[j]*(alphas[j] - alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej - labelMat[i]*(alphas[i] - alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T 
                - labelMat[j]*(alphas[j] - alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                #步骤8:根据b_1和b_2更新b
                if (0 < alphas[i]) and (C > alphas[i]) :
                    b = b1
                elif (0 < alphas[j]) and (C > alphas[j]):
                    b = b2
                else:
                    b = (b1 + b2)/2.0
                #统计优化次数
                #如果程序执行到for循环的最后一行都不执行continue语句,那么就已经成功地改变了一对alpha,同时可以增加alphaPairsChanged的值
                alphaPairsChanged += 1
                #打印统计信息
                print("第%d次迭代 样本:%d, alpha优化次数:%d" % (iterSmo,i,alphaPairsChanged))
        #更新迭代次数
        #在for循环之外,需要检查alpha值是否做了更新,如果有更新则将iterSmo设为0后继续运行程序。只有在所有数据集上遍历maxIter次,且不再发生任何alpha修改之后,程序才会停止并退出while循环
        if (alphaPairsChanged == 0): iterSmo += 1
        else:
            iterSmo = 0
        print("迭代次数:%d" % iterSmo)
    return b,alphas

b,alphas = smoSimple(dataArr,labelArr,0.6,0.001,500)

L==H
第0次迭代 样本:1, alpha优化次数:1
第0次迭代 样本:3, alpha优化次数:2
第0次迭代 样本:5, alpha优化次数:3
L==H
第0次迭代 样本:8, alpha优化次数:4
L==H
j not moving enough
j not moving enough
L==H
L==H
j not moving enough
L==H
第0次迭代 样本:30, alpha优化次数:5
第0次迭代 样本:31, alpha优化次数:6
L==H
L==H
第0次迭代 样本:54, alpha优化次数:7
L==H
L==H
第0次迭代 样本:71, alpha优化次数:8
L==H
L==H
L==H
第0次迭代 样本:79, alpha优化次数:9
L==H
第0次迭代 样本:92, alpha优化次数:10
j not moving enough
L==H
迭代次数:0
第0次迭代 样本:1, alpha优化次数:1
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
L==H
L==H
j not moving enough
j not moving enough
j not moving enough
j not moving enough
L==H
j not moving enough
L==H
L==H
j not moving enough
j not moving enough
第0次迭代 样本:37, alpha优化次数:2
第0次迭代 样本:39, alpha优化次数:3
第0次迭代 样本:52, alpha优化次数:4
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
第0次迭代 样本:71, alpha优化次数:5
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
迭代次数:0
j not moving enough
j not moving enough
j not moving enough
第0次迭代 样本:8, alpha优化次数:1
L==H
j not moving enough
第0次迭代 样本:23, alpha优化次数:2
L==H
j not moving enough
j not moving enough
L==H
j not moving enough
j not moving enough
j not moving enough
第0次迭代 样本:39, alpha优化次数:3
L==H
j not moving enough
第0次迭代 样本:52, alpha优化次数:4
j not moving enough
第0次迭代 样本:55, alpha优化次数:5
L==H
L==H
L==H
L==H
L==H
j not moving enough
第0次迭代 样本:79, alpha优化次数:6
第0次迭代 样本:92, alpha优化次数:7
迭代次数:0
j not moving enough
L==H
j not moving enough
j not moving enough
L==H
j not moving enough
第0次迭代 样本:23, alpha优化次数:1
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
L==H
L==H
第0次迭代 样本:51, alpha优化次数:2
j not moving enough
j not moving enough
j not moving enough
j not moving enough
L==H
第0次迭代 样本:69, alpha优化次数:3
L==H
j not moving enough
第0次迭代 样本:94, alpha优化次数:4
j not moving enough
j not moving enough
迭代次数:0
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough

...

迭代次数:497
j not moving enough
j not moving enough
j not moving enough
迭代次数:498
j not moving enough
j not moving enough
j not moving enough
迭代次数:499
j not moving enough
j not moving enough
j not moving enough
迭代次数:500

b
matrix([[-3.83785102]])

alphas[alphas>0]
matrix([[0.1273855 , 0.24131542, 0.36872064]])

np.shape(alphas[alphas>0])
(1, 3)

for i in range(100):
    if alphas[i] > 0.0:
        print(dataArr[i],labelArr[i])
[4.658191, 3.507396] -1.0
[3.457096, -0.082216] -1.0
[6.080573, 0.418886] 1.0

#分类结果可视化
def showClassifer(dataMat, w, b):
    #绘制样本点
    data_plus = []                                  #正样本
    data_minus = []                                 #负样本
    for i in range(len(dataMat)):
        if labelMat[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus)              #转换为numpy矩阵
    data_minus_np = np.array(data_minus)            #转换为numpy矩阵
    plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1], s=30, alpha=0.7)   #正样本散点图
    plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1], s=30, alpha=0.7) #负样本散点图
    #绘制直线
    x1 = max(dataMat)[0]
    x2 = min(dataMat)[0]
    a1, a2 = w
    b = float(b)
    a1 = float(a1[0])
    a2 = float(a2[0])
    y1, y2 = (-b- a1*x1)/a2, (-b - a1*x2)/a2
    plt.plot([x1, x2], [y1, y2])
    #找出支持向量点
    for i, alpha in enumerate(alphas):
        if abs(alpha) > 0:
            x, y = dataMat[i]
            plt.scatter([x], [y], s=150, c='none', alpha=0.7, linewidth=1.5, edgecolor='red')
    plt.show()
#计算w
def get_w(dataMat, labelMat, alphas):
    alphas, dataMat, labelMat = np.array(alphas), np.array(dataMat), np.array(labelMat)
    w = np.dot((np.tile(labelMat.reshape(1, -1).T, (1, 2)) * dataMat).T, alphas)
    return w.tolist()
w = get_w(dataMat,labelMat,alphas)
showClassifer(dataMat,w,b)
手撕SVM(公式推导+代码实现)(三)

展开阅读全文

页面更新:2024-04-21

标签:向量   矩阵   初始化   线性   样本   算法   公式   步骤   次数   代码   标签   数据

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2008-2024 All Rights Reserved. Powered By bs178.com 闽ICP备11008920号-3
闽公网安备35020302034844号

Top