Angew:化学预钾化以提高双碳钾离子混合电容器性能

在此,为钾离子混合电容器(PIHC)开发了一种化学预钾化策略,该策略通过在钾-萘-四氢呋喃溶液中同时处理葡萄糖衍生碳(GDC)阳极和商用活性碳(CAC)阴极。结合原位和非原位表征,证实了预钾化试剂与碳电极之间的自由基反应,这不仅使电化学不可逆位点失活,而且促进在电极上预形成均匀且致密的富KF电解质膜。因此,预钾化处理具有多重优势:(I) GDC阳极的初始库仑效率(CE)从45.4 % 提高至84.0 % 具有较高的速率能力;(II) CAC阴极表现出改进的循环CE和稳定性,这是由于在4.2 V下更好阻止了电解质氧化(III) 组装后的PIHC具有172.5 Wh kg 1的高能量密度,循环寿命超过10000次。

图1 a) Schematic illustration of the pre-potassiation process and its effects on dual-carbon potassium ion hybrid capacitor. b) The CV curve of K-Nap-THF solution with copper foil as the working electrode at 1.0 mV s 1. c) The first CV curves of the GDC-CP and GDC anodes at 0.1 mV s 1. d) The first charge/discharge curves of the GDC-CP and GDC anodes at 0.2 A g 1. e) The cycling performance of the GDC-CP and GDC anodes at 0.2 A g 1. The charge/discharge curves of the f) CAC-CP and g) CAC cathodes at 1.0 A g 1. h) The cycling performance of the CAC-CP and CAC cathodes at 1.0 A g 1.

图2 a) The 39K solid-state NMR spectra of the GDC-CP and CAC-CP powders. The XANES spectra of the b) GDC, GDC-CP and GDC-EP electrodes and the c) CAC, CAC-CP and CAC-EP electrodes at C K-edge. The evolution of elements (C, O, F, P, K) with sputtering depth for d) the GDC-CP electrode and f) the CAC-CP electrode (inset images are the TEM images of the cycled GDC-CP and CAC-CP samples, respectively.). e) The high resolution F 1s spectra along the sputtering depth of the GDC-CP and CAC-CP electrodes. The AFM images of Young's modulus distribution for the g) GDC, h) GDC-CP, i) CAC and j) CAC-CP electrodes.

图3 The SEM images of the a) CAC and b) CAC-CP cathodes at different charge/discharge voltages. The SEM images and the corresponding elemental (F, P, K) mapping images of the c) CAC and d) CAC-CP electrodes at 4.2 V, respectively. e) 3D visualization of the architectural evolutions of K2F+, PF6 , PO2 and C2H3O2 for the cycled CAC (top) and CAC-CP (bottom) electrodes, respectively. f) The molecular orbital diagrams of HOMO and LUMO for EC, PC and KPF6 with different chemical environment.

图4 a) The long-term cycling performance of the GDC//CAC and GDC-CP//CAC-CP hybrid capacitors at 1.0 A g 1 (inset images are the charge/discharge curves of the GDC//CAC and GDC-CP//CAC-CP hybrid capacitors, respectively). b) The rate performance of the GDC-CP//CAC-CP hybrid capacitor at different current densities. c) In situ monitoring of the GDC-CP//CAC-CP hybrid capacitor during charge/discharge process with a three-electrode device at 1.0 A g 1. d) Ragone plot comparisons of the GDC-CP//CAC-CP hybrid capacitor with previous reports. e) The long-term cycling performance of the GDC-CP//CAC-CP pouch cell at 1.0 A g 1 (inset digital images are the scenes of the GDC-CP//CAC-CP pouch cell driving an electric fan at different times). Note that the mass ratio of active materials of anode to cathode is 1 : 2, and the electrochemical performance of hybrid capacitor is calculated based on the total active mass of anode and cathode.

来源:Yong Qian, Bei Wu, Yang Li, Zhen Pan, Dr. Shuai Feng, Dr. Ning Lin, Prof. Yitai Qian,Integrating Chemical Pre-Potassiation with Pre-Modulated KF-Rich Electrolyte Interfaces for Dual-Carbon Potassium Ion Hybrid Capacitor,Angew. Chem. Int. Ed. 2023, 62, e202217514,https://doi.org/10.1002/anie.202217514

展开阅读全文

页面更新:2024-03-13

标签:致密   活性碳   电解质   电化学   阳极   阴极   呋喃   原位   电极   电容器   离子   性能   策略   化学

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2008-2024 All Rights Reserved. Powered By bs178.com 闽ICP备11008920号-3
闽公网安备35020302034844号

Top