干货 - 底盘线控系统在智能驾驶中的应用

底盘线控系统在智能驾驶中的应用前景

1、 智能驾驶系统对底盘线控系统的需求:近年来,随着芯片处理能力的快速发展,以及车载雷达、摄像头等识别感应装置的性能提高与成本降低,AEB/AVP/LKA/ACC 等以提高车辆全性能为目的的驾驶辅助系统在类别和数量上都急剧增加。

随着智能驾驶技术的进一步发展,智能驾驶系统控制完全替代驾驶员的“无人驾驶系统”的应用可行 性将会大幅度提升。而底盘线控系统是这一切的基础。

2、OEM对底盘线控系统联合开发和快速响应的要求:跨国供应商普遍将核心开发工作放在公司总部完成,无法满足OEM对底盘线控系统联合开发和快速响应的要求。

3、智能驾驶技术快速迭代对底盘线控系统的响应和开放要求:国内供应商切入市场的机会恰恰在于这当中产生的响应速度和开放接口要求。

4、芯片、电机、仿真、开发工具等技术发展,给国内底盘控制系统的开发插上了翅膀。

5、国内底盘控制系统的经验积累和初代产品量产成功带来了信心。

6、良好的整零关系、产业链融合是国内底盘控制系统占据市场主导地位的基础。


新一代汽车对底盘技术的特点

智能化

• 感知更多的信息

• 识别驾驶员意图

• 接收多种控制源

安全化

• 硬件冗余化设计

• 完善的监控系统

• 安全的软硬件架构

电动化

• 电子控制为核心

• 机电一体化设计

• Control-by-wire(线控)


智能汽车对制动系统新要求

(1)制动系统的有效性:主要监控指标可以是制动距离、制动减速度、制动力和制动时间等。

(2)制动系统的稳定性:指汽车在制动过程中维持制动能力和行驶方向的能力。

(3)制动系统的可靠性:系统的失效严重度、失效频率都保持在较低水平,而且应该装有监控与报警模块, 及时发现安全隐患。完全基于通信网路的指令发送和执行,失效模式下的处理措施需全面考虑。

(4)制动系统的易操作性:最基本的比如液压刹车系统中踩刹车所需要的力要合适。

(5)制动系统的冗余性:智能驾驶汽车要求制动系统必须冗余备份。

(6)制动系统的智能化:实现主动制动及快速响应。

智能汽车对制动系统新要求


制动系统技术革新

【行车制动系统 】机械助力演变为电子制动

干货 | 底盘线控系统在智能驾驶中的应用

【驻车制动系统 】机械驻车演变为电子驻车

干货 | 底盘线控系统在智能驾驶中的应用

【气压制动系统 】气压机械制动演变为电子气压制动

干货 | 底盘线控系统在智能驾驶中的应用


气压制动系统的演进

干货 | 底盘线控系统在智能驾驶中的应用


气压电子制动系统EBS

干货 | 底盘线控系统在智能驾驶中的应用


EBS功能简介:

制动控制:坡道防溜车、电子制动力限制、减速 器控制、接合力控制、复合制动、减 速控制

稳定性控制:防抱死制动功能、牵引力控制、电子 稳定性控制、差速锁控制、发动机/制 动扭矩控制

性能监测:制动性能监测、衬片磨损控制、制动 温度监测、胎压指示器


IBC 解决方案

方式一:独立的机电一体化建压部件+ABS/ESC总成(two box方案)

干货 | 底盘线控系统在智能驾驶中的应用

方式二:建压及调压共用一套电机,集成在一个模块 (one box方案)

干货 | 底盘线控系统在智能驾驶中的应用

优势:系统集成度高 劣势:结构复杂制造困难,电控系统涉及面太广,失效模式多。技术难度大。

液压控制单元

• ESC作为AEB的执行器时,其制动强度大约为0.5g。AEB对制动系统的制动强度要求在0.8g以上,ESC建压能力有限。

• ESC控制制动系统的设计初衷是在极少数情况下使用,使用频次可能小于2次/年。ESC的低压蓄能器(LPA)空间极小, 一般为3ml,频繁使用会导致阀体发热严重,精密度下降,最终导致ESC系统寿命急剧下降。

• ESC的回油泵驱动电机功率有限,反应速度远低于IBC,最快建压速度比IBC慢大约200-350ms。这在高速时差距明显。

干货 | 底盘线控系统在智能驾驶中的应用

ESC不能做常规线性控制系统。HCU管路空间结构复杂,制造难度很大。


电子驻车EPB系统

干货 | 底盘线控系统在智能驾驶中的应用

发展趋势-EPB与ESC集合

干货 | 底盘线控系统在智能驾驶中的应用

集成EPBi 软件开发

EPB和ESC代码级的融合开发。其他系统完全可以参考,发挥产业链上下游各自所 长,加快集成系统开发进度。


发展趋势-无人驾驶制动系统

无人驾驶的制动系统 = IBC +ESC+ EPB

• ESC车身稳定性控制

• ABS防抱死制动

• EBD制动力分配

• HDC陡坡缓降

• ACC自适应巡航

• AEB自动紧急制动

• AUTO HOLD功能

• DAA辅助起步

• 针对电动汽车和混合动力汽车的应用,还可以配合制动能量回收系统实现再生制动的调节控制, 协调再生制动和液压制动之间的制动力过渡和衔接。

干货 | 底盘线控系统在智能驾驶中的应用

新一代制动系统架构(液压)

无人驾驶需要冗余备份的制动系统

干货 | 底盘线控系统在智能驾驶中的应用

• IBC电液制动控制系统 • BSC 制动稳定性控制系统,集 成 ESC + EPB

无人驾驶车的制动系统应用

干货 | 底盘线控系统在智能驾驶中的应用

高速车辆

• 行车制动主控系统 IBC

• 行车制动备用系统 ESC

无人驾驶车的制动系统应用

干货 | 底盘线控系统在智能驾驶中的应用

低速车辆

• 行车制动主控系统 IBC

• 行车制动备用系统 EPB

发展趋势-电子制动系统EMB

干货 | 底盘线控系统在智能驾驶中的应用

由踏板传感器检测踏板行程,然后将位移信号转化成电信号传给EBS的ECU电控单元, 无刷电机驱动制动器产生制动力,踏板行程和制动力可按比例进行调控。

优点:

结构简单,没有液压油管路,信号通过电传播;

反应灵敏,减小制动距离,工作稳定,维护简单;

通过ECU直接控制,易于实现主动制动等智能化功能。

转向技术发展

干货 | 底盘线控系统在智能驾驶中的应用

诞生于1902年

20世纪50年代 美国GM率先在轿车上采用液压助力转向系统

解决泊车和低速行驶时驾驶员的转向操纵负担过于沉重

• HPS通过发动机动力输出转化成液压泵压力,对转向系统 施加辅助作用力

• 为保持压力,不论是否需要转向助力,系统总要处于工作 状态,能耗较高


转向技术发展

干货 | 底盘线控系统在智能驾驶中的应用

• 1988年,日本Suzuki公司首先在小型轿车Cervo上配备了 Koyo公司研发的转向柱助力式电动助力转向系统

• 1990年,日本Honda公司也在运动型轿车NSX上采用了自 主研发的齿条助力式电动助力转向系统

EPS由电动助力机通过电机提供转向力矩 EPS只是在转向时才由电机提供助力

• 节能环保 • 降低油耗 • 助力比可变 • 更好的操控性


转向技术发展

干货 | 底盘线控系统在智能驾驶中的应用

线控转向系统取消了方向盘与转向轮之间的机械连接,占 用空间小,可避免或减少碰撞时转向机构对于车内人员的伤害。

• 安全性 • 随需转向 • 自动驾驶


EPS工作原理

当驾驶员在操纵转向盘时,控制单元根据扭矩转角传感电 压和车速的信号,给出指令控制电动机运转,从而产生所 需要的转向助力。

干货 | 底盘线控系统在智能驾驶中的应用

干货 | 底盘线控系统在智能驾驶中的应用


线控转向系统

无人驾驶的转向系统架构


干货 | 底盘线控系统在智能驾驶中的应用

底盘域控制器架构方案

干货 | 底盘线控系统在智能驾驶中的应用


底盘域控制器的优势

域控制器拥有强大的硬件计算能力与丰富的软件接口支持;

智能控制核心功能集中于域控制器内,实时性高,协调处理速度快,系统功能集成度高;

对功能执行的硬件要求降低,仅响应控制指令,可使执行部件设计难度和制造成本降低;

对感知系统的软件功能要求降低,可仅提供基础感知数据,甚至可集成感知芯片在域控制器上;

可制定标准化的感知部件和执行部件,部件兼容性强,适用范围广。


活动推荐:

华车展ICVS将于2022.9.26-29 苏州国际博览中心举办中国智能汽车及自动驾驶博览会,同期举办:中国智能汽车产业链展,展会规模超30,000 、参展品牌500+、共计30,000+专业观众到场,同期还有100场行业大咖演讲。点击ICVS自动驾驶商业化主页—>进入菜单栏展会报名页面,即可免费领取参观门票,现阶段报名还将获取更多福利。

展开阅读全文

页面更新:2024-05-13

标签:底盘   智能   干货   系统   冗余   控制系统   速度   能力   快速   国内   汽车

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2008-2024 All Rights Reserved. Powered By bs178.com 闽ICP备11008920号-3
闽公网安备35020302034844号

Top