我们建设了世界上首个全超导托卡马克装置 EAST,可以利用磁场

目前地球上熔点最高的物质是铪合金——五碳化四钽铪化合物,熔点高达4215摄氏度。不过很遗憾,太阳表面温度5500摄氏度,足足差了一千多摄氏度。而单纯温度达到一千多摄氏度,就足够将大部分石头融化了。

我们建设了世界上首个全超导托卡马克装置 EAST,可以利用磁场

电灯泡里面的钨丝可以承受3415 的高温,人造熔点最高的钽铪合金需要达到4200多 的高温才会融化,然而太阳表面的温度高达5600 ,仍然能将它们融化甚至汽化掉。
如果再往里延伸,太阳的核心区温度可以达到1500万摄氏度,毫不夸张,人类即便穿过表面进入核心,在强大的压力以及极高的温度下,你也会成为核聚变原料。

先问一个问题,为什么太阳是球形的?

太阳中心在发生氢聚变,相当于持续不断的大量氢弹爆炸,强大的辐射压把物质不断喷射出去,那么是什么力量约束太阳保持球形不炸开呢?是引力,太阳自身巨大的质量形成引力场,把表面的物质拽向核心,同时辐射压把核心物质向外喷发,形成平衡,保持了球形。换句话说,引力场就是装太阳的“容器”。
科学家想在地球上造一个人工太阳“可控核聚变”来解决能源问题,既然目前没有一种物质能够装太阳,所以科学家也是希望利用场来约束太阳。不过人造小太阳质量很小,不足以形成足够大的引力场,科学家用的是磁场。高中物理知识,带电粒子在磁场中会发生偏转。聚变的原材料氢核和产物氦核都是带正电的,如果我们有一个精心设计的强磁场,让核反应只在能在场内进行,带电粒子都飞不出了,我们就有了一个装“小太阳”的“容器”了。

我们建设了世界上首个全超导托卡马克装置 EAST,可以利用磁场



再来说隔热的事,大家听过“纸锅烧水”吧?沸腾的水带走多余的热量使得纸锅温度达不到着火点。目前的核电站也是类似原理,用大量水来冷却反应堆,里面在核裂变,外面却感受不到澎湃的热量。未来的人工太阳核聚变发电站也是利用同样原理。用冷却液带走热量对设施外隔热,同时用冷却剂吸收的热量来发电。
可控核聚变的原理我说的比较通俗,实际上还有很多复杂的细节。不过近年发展很快,不久的未来我们将会在地球表面制造我们自己的太阳。

那么人类真的就无法到达太阳表面了吗?其实这个可能性也不能完全否定,比如现在人类正在研制的可控核聚变技术,在核聚变的瞬间会产生高达几千万甚至上亿摄氏度的温度,地球上当然也没有能承受如此高温的物体,但是科学家们却能利用人造磁场将能量控制在一定的空间范围中,那么如果人类将来利用这种技术有没有可能触摸太阳呢?
当然人类不可能制造一个巨型磁场将整个太阳控制起来,不过我们或可在探测器或者飞船的前端安装一个这样的单向输出的磁场,让其对太阳能量进行分流,使得太阳辐射过来的能量分向两边,这样探测器和飞船受到的热辐射就少多了,如果磁场装置不能长时间经受太阳高温,也可以不断对发射磁场的装置进行更换,更换之后立即降温,之后再进行置换,这样循环下去,我们或能做到靠近太阳表面。

我们建设了世界上首个全超导托卡马克装置 EAST,可以利用磁场

事实上,太阳内核的温度是1500万摄氏度,而中国科学家做的“人造小太阳”温度可以达到1亿度以上,并且前不久才实现了放电的功能。也就会说,“人造太阳”的反应温度要远远高于太阳内核的温度。那“人造太阳”不会被熔化吗?
这其实和人造太阳的原理有关。当物质的温度达到一定的程度,构成物质的原子会因为环境温度过高而失去电子。这主要是因为电子获得了足够大的能量,摆脱原子核的束缚。

此时,物质不再是我们常见的三态(气态、固态、液态),而是等离子态。所谓等离子态就是带负电的自由电子和带正电的离子共存的状态,太阳内部的物质状态就是等离子态。
而“人造小太阳”装置中参与反应的物质也是等离子态,这就意味着它们是带电的。根据电磁学理论,带电粒子在磁场中会因为洛伦兹力的作用而发生偏转,甚至是做圆周运动。
因此,我们只要对反应物加入一个磁场,就可以让反应物在一个环形轨道中运动。此时反应物就不会和装置材料接触,也就不会熔化装置,这样的装置也叫作托卡马克装置。
中国的“人造小太阳”利用的就是这个原理,采用的就是托卡马克装置来实现可控核聚变反应。

我们建设了世界上首个全超导托卡马克装置 EAST,可以利用磁场



除了利用磁场来束缚。实际上科学家还想到了利用激光来束缚,目前也确实有科学家在做相关的实验,这也可以确保反应物和材料不会相互接触,这也被称为激光束缚。
今天,我们震撼于太阳核聚变释放的能量,也希望利用这种能源为地球人使用,所以很多国家在进行核聚变“人造太阳”的研究项目,中国在这方面处于世界领先水平,我们建设了世界上首个全超导托卡马克装置 EAST,可以利用磁场,将氘、氚的等离子体在100秒内加热到5000万度,因为利用磁场效应,这些等离子体是悬浮状态,不和材料接触,所以可以保持一段时间。

太阳内核的温度高达摄氏一千五百万度,在那儿发生着氢-氦核聚变反应。核聚变反应每秒钟要消耗掉约五百万吨的物质,并转换成能量以光子的形式释放出来。这些光子从太阳中心到达太阳表面要花一百多万年。光子从太阳中心出发后先要经过辐射带,沿途在与原子微粒的碰撞丢失能量。随后要经过对流带,光子的能量被炽热的气体吸收,气体在对流中向表面传递能量。到达对流带边缘后,光子已经冷却到五千五百摄氏度了。

我们建设了世界上首个全超导托卡马克装置 EAST,可以利用磁场



我们所能直接看到的是位于太阳表面的光球层。光球层比较活跃,温度约为摄氏六千多度,属于比较“凉爽”部分。光球层上有一个个起伏的对流单元“米粒”。每个米粒的直径在一千六百公里左右,它们是一个个从太阳内部升上来的热气流的顶问。就是在不断的对流活动中,太阳每秒钟向宇宙空间释放着相当于一千亿个百万吨级核弹的能量。

在光球层的某些局部温度比较低,在可见光范围内这些部位就显得比其它地方黑暗,所以人们称之为“黑子”。光球层外包裹着色球层,太阳将能量通过色球层向外传递。这一层中有太阳耀斑,所谓耀斑是黑子形成前产生的灼热氢云。色球层之外是太阳大气的最外层日冕。日冕非常庞大,可以向太空绵延数百万公里,但只有在日全食时才可看到它。人们可以在日冕中可以看到从色球层顶端产生的巨大火焰“日饵”。

在辐射光和热的同时,太阳也产生一种低密度的粒子流——太阳风。太阳风以每秒四百五十公里的速度向宇宙空间辐射。地球和其它某些行星的极光也是太阳风带来的。如果一段时间内太阳风异常强大,便形成了太阳风暴。太阳的磁场极其强大复杂,其范围甚至越过了冥王星轨道。

太阳已经近五十亿岁了,它还可以继续平静地燃烧约五十亿年。五十亿年后,太阳内部的氦将转变成更重的元素,亮度会增加到现在的一倍,体积也将不断膨胀,水星、金星和地球都将进入它的大气。在经历一亿年的红巨星阶段后,太阳将耗尽所有能源而坍缩成一颗白矮星,并通过向宇宙空间抛射物质而形成一个行星状星云

展开阅读全文

页面更新:2024-03-08

标签:磁场   等离子态   反应物   装置   太阳风   超导   摄氏度   马克   能量   温度   物质   太阳

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2008-2024 All Rights Reserved. Powered By bs178.com 闽ICP备11008920号-3
闽公网安备35020302034844号

Top