晶体学视角探索超导体MgB2超导电性的产生

晶体学观点已讨论了多种类型超导体晶体结构与超导电性关系,得出结论:现在探索过的超导体有两大类。一类如YBCO,同相不同轴晶格常数相近或加倍,形成共格生长,或不同相的晶格常数相近形成共格生长。还有BiSrCaCuO形成BiO和类钙钛矿型结构超晶格。这类结构都有晶格错配,形成畴区的分晶格。另一类有铁系超导体,以PrFeAsO为代表,以TaS2(或TaSe2)为代表的MX2型晶体,及CsV3Sb5晶体等都是二维特征明显层状结构超导体。当温度、压力变化时不同原子层或“分子层”变化互不协同,出现微观应力,能量升高,为降低能量,结构调整,形成分晶格或超晶格。晶格振动对抗、干扰和钉扎,在降温和(或)加压的助力下。使晶体的晶格振动为零,实现超导。本文探索的金属硼化物MgB2属于上述的第二类层状结构超导体。

MgB2晶体具有超导电性,是在2001年由日本科学家首先发现。晶体结构包括单晶制备在超导电性发现之前已早有报导。该超导体在零场下,超导转变温度为20K。多年来对这种超导体已有大量研究。报导了结构,研究了掺杂与其它材料复合,线材帶材制备,不同条件对超导电性影响。至今没查到从晶体学视角,探索MgB2超导体超导电性的产生的机理。本文将作此探索。

MgB2晶体结构为P6/mmm(191)空间群,六方晶系,简单晶格,一个简单晶胞含1个分子(式〉,即Z 1。晶格常数a b 0.3086nm,c 0.3521nm(数据来自PDF号38—1369*,实验值。星号表示可信度高)如图所示。

晶体学视角探索超导体MgB2超导电性的产生

图1.MgB2的简单晶胞图

1Mg原子占据晶胞坐标原点,分数坐标:(0,0,0);2B原子占据:(2/3,1/3,1/2);(1/3,2/3,1/2)。

请熟悉的朋友谅解,让作者说明一下,通常六方晶系给出晶体学数据时,用的是简单晶胞(每个晶胞有一个格点称简单晶胞,有一个以上格点为复杂晶胞),菱面柱晶胞,每个晶胞有一个格点(阵点),依据周期性(晶格)晶胞的8个顶角是一个点。如果占原子就是一个原子。在网上看到用这一晶体结构出的考试试题,取六棱柱晶胞,这本应是为了观察对称性,由3个简单晶胞拼起来的复杂晶胞,如图2。这是一个自画图,Mg原子和B原子没能用颜色或大小区别开。

晶体学视角探索超导体MgB2超导电性的产生

图2.MgB2晶体的六角复杂晶胞图


晶体学视角探索超导体MgB2超导电性的产生

图3.MgB2的六角晶胞沿c方问投影图

有3个格点。试题中让考生数原子,再依据每个原子占的分数计算原子数,最后确定分子式MgB2。如果出题人和答题人晶体学概念清楚,还用数吗,对于这一晶体结构,简单晶胞只有一个MgB2,六角复杂晶胞是3个MgB2。

现在回到我们正题。观察晶体结构,Mg原子作二维晶格六角排列,与金属的紧密堆积二维结构类型相同。两层Mg原子层作a和b方向无平移的c方向正堆垛,即Mg原子顶对顶。两原子层之间形成三棱柱间隙,B原子填满所有三棱柱间隙中心。从整体结构看,就是在c方向Mg层和B2层等间距间隔排布。B原子形成六元环连结的网格结构,与石墨烯的结构类型相同。MgB2晶体结构具有显著的层状结构特征,是二维结构状态。见图2,淡绿色原子层为Mg层,土红色原子层为B2层。


晶体学视角探索超导体MgB2超导电性的产生

图3.观察MgB2结构的层状特征图

以晶体学数据为依据考查MgB2结构的原子间距,判断结构中原子之间的键合关系。

从晶体结构参数,可以确定同层Mg一Mg原子间距为0.3086nm。查表得到Mg金属半径为0.16nm。如果Mg原子是金属键,Mg一Mg间距应该是0.32nm。可以看出在结构中Mg原子被拉近了,比金属键间距还小。面内B一B最近原子间距,经计算为0.1782nm,查表得到的B原子共价半径为0.082nm,如果两原子相碰应该是0.164nm,比结构中的间距小,在结构中B原子被拉开了0.0142nm。这是应该的,两种原子层互相作用的结果。Mg一Mg之间近金属键,不是纯金属键,B一B之间近共价键,不是纯共价键。在晶体结构c方问Mg一Mg层间距,同时也是B2一B2层间距就是晶格常数c,等于0.3521nm,Mg一B2层间距为0.1761nm。查得B原子范德华半径为0.192nm,“球”碰“球”间距为0.384nm,由于中间插入Mg层,使B一B层间距反而小了0.0319nm。从数值上看,层间近分子键,不是纯分子键,但二维特征明显,是具有二维特征的三维晶体。虽然是三维晶体,但由于二维晶格的两种原子或“分子层”结构不同,性能不同,二维晶体特征充分显示。这种结构状态与以TaS2为代表的MX2型结构、CsⅤ3Sb5和PrFeAsO晶体结构虽然不同,但具有相同的二维结构特征。

现在讨论的是在常温常压下的结构状态,保持结构能量最低状态。隨着温度降低或压力增加,Mg层和B2层动作並不协同,初始时能量升高,当能量升高到一定时,会出现结构调整。可以是分成畴区(分晶格),或形成超晶格。出现不同区域两种“分子层“的二维晶格失配。情况就类似两片石墨烯,以很小的角度堆垛形成超晶格(著名的“魔角”实验)产生超导电性。所不同的是,魔角实验是两片石墨烯转动一个小角度堆垛,形成超晶格,二维特征明显的三维晶体由于不同原子(或分子)层结购不同,具有不同性能。在降温或升压作用下收缩並不协同(升温减压时降低能量又会恢复)。使整个三维晶体结构升高能量,初时还可以。当达到一定温度或压力时,结构必将调整,形成不同畴区或超晶格,说句通俗的话,层与层之间有些区域保留原来键合,有些区域失去原来键合,形成类似两层石墨片转角实验那样结构状态,实现晶格振动对抗干扰钉扎,出现零晶格振动。理论上说,在绝对零度,晶格振动为零,电阻为零。超导电性的产生只是特定结构作用,使晶格振动为零提前发生了,在导电性及相关物性看到了,就是超导了。

综述一下。这种具有明显二维特征的三维晶体,其结构为晶格调整准备了条件,一定温度压力下实现结构调整,调整后的晶格,错配也好,分畴也罢,总之晶格振动不用等到绝对零度才为零,从而呈现超导。读者会发现作者在多个超导体结构中重复一个基本观点,没说出新内容。这说明超导体呈现的性能不同,但机理是相通的。就像铜、铝、铁、锌……金属的导电性不同,而原理一样。有问题只是作者具体事情没说对,没说清,没表达好。但超导电性来自晶格振动,受结构作用使晶格振动为零是坚信的。从高温超导体直到极低温单质金属超导体,可以“全程打通”,还没有一个说法能做到。先预报一下,极低温单质金属超导电性产生可能源于晶体缺陷,以位错和层错为主。

展开阅读全文

页面更新:2024-04-25

标签:超导体   超导电性   晶格   晶体   晶胞   金属键   间距   原子   视角   特征   结构

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2008-2024 All Rights Reserved. Powered By bs178.com 闽ICP备11008920号-3
闽公网安备35020302034844号

Top