基于麦克风阵列声源定位的发展历程及关键技术

基于麦克风阵列声源定位的发展历程及关键技术

一、发展历程 二、声源定位关键技术

基于麦克风阵列的声源定位是指用麦克风拾取声音信号,通过对麦克风阵列的各路输出信号进行分析和处理,得到一个或者多个声源的位置信息,其使用的关键技术有以下几个方面。

2.1 模型的建立

麦克风阵列的阵元按一定的方式布置在空间不同的位置上组成阵列,阵列能够接收空间传播信号,经过适当的信号处理提取所需的信号源和信号属性等信息。阵列按阵元在空间分布形式的不同,可以分为任意离散阵、直线阵、平面阵、圆弧阵和均匀圆阵。不同的阵列模型有各自的优缺点 ,可以用来处理不同的实际情况。

均匀直线阵由于结构简单,并且同时间序列的均匀采样完全对应,可以采用绝大多数基于时间序列的算法,因此受到很大的重视,应用也十分广泛。然而均匀直线阵列也有很多局限性,不适合多波束的形成,不能直接用于180°范围内的定位,往往是利用多个阵列组合定位,但增加了系统复杂度和实现成本,而且在麦克风阵列的算法处理中也需要进行切换。

平面阵虽然可以在整个平面对目标进行测向,但对于低空甚至是超低空飞行的目标来说,由于在z轴方向没有基元,测向精度受到限制。

均匀圆阵是阵元均匀分布在一个圆环上的圆形阵列,方向增益基本一致,可以提供360°的方位信息,但其对应一个二维空间,在时域无法找到对应的采样定理,会给算法实现带来麻烦,并且由于其圆对称性,均匀圆形阵列对相干声源的解算能力比较弱。但因其不需扇区切换,处理较为容易。

三维阵列结构较复杂,可以选择的算法不是十分丰富,实现成本较高,但是对整个三维空间定位性能好,适用于需要对整个三维空间定位的系统。

在利用麦克风阵列进行声源定位时,必须已知各个麦克风阵元之间的相对位置关系。不同的阵型结构对算法精度的影响也非常大,因此需针对不同的应用环境选择与之相对应的阵列结构。特别是对多个声源目标进行定位时,过小的阵列口径会极大地影响阵列的应用范围。因此,要根据不同的应用需求选取不同的阵列模型。

2.2 算法的选取

麦克风阵列接收的声音信号本身就是复杂的信号,因此声源定位算法必须能够适应信号的各种特性。不同的声源信号,采取的定位算法也可能不同:例如,在对说话人进行定位时,由于拾取到的语音信号没有经过调制,也没有载波,阵列之间的时延和相位差与信号源的频率关系密切,此时麦克风阵列处理的信号应该看做是一个宽带信号,而传统的定位算法是对窄带而言的。下面就两种经典的算法进行比较。

MUSIC算法的基本思想是将任意阵列输出的协方差矩阵进行特征分解,得到相互正交的信号子空间和噪声子空间,然后利用两者的正交性进行DOA估算。MUSIC算法对波达方向的估计性能很好,可以高分辨地准确表现各信号的波达方向,如果参与运算的数据长度足够长或信噪比足够高,且信号模型准确的话,MUSIC算法可以得到任意精度的波达方向估计值。但是MUSIC算法是以信号子空间和噪声子空间能够准确得到为前提,如果信噪比低或样本数不够,MUSIC算法的分辨率会大幅下降。

基于时延估计(TDOA)的声源定位法在运算量上优于其他方法,实时性好,可以在实际中低成本实现,但也有不足之处:其一是估计时延和定位分成两阶段来完成,因此在定位阶段用的参数已经是对过去时间的估计,这在某种意义上只是对声源位置的次最优估计;其二是时延定位的方法比较适合于单声源的定位,而对多声源的定位效果就不好;其三在房间有较强混响和噪声的情况下,往往很难获得精确的时延,从而导致第二步的定位产生很大的误差;其四是由于阵列结构和系统采样率等条件的限制,其定位精度远远不能与超分辨类算法相比。

任何一种算法都不可能适用于所有情况,我们在不断完善算法,优化其性能的同时,应根据不同的应用环境来选择最佳算法,从而达到最佳效果。

三、麦克风阵列处理的难点

采用多个麦克风构成一个麦克风阵列,在时域和频域的基础上增加一个空间域,对接收到的来自空间不同方向的信号进行空时处理,这就是阵列麦克风信号处理的核心思想。阵列信号处理理论的完善和发展,促进了基于阵列麦克风的信号处理理论的发展。很多用于阵列信号处理的新算法、新技术和新体系,都可以用于阵列麦克风。可以说,阵列信号处理理论的发展为阵列麦克风的研究带来了新的契机[4]。

基于麦克风阵列的语音信号处理是阵列信号处理的一种,但它又不同于传统的阵列信号处理,其主要技术难点如下:

3.1 麦克风阵列模型的建立

麦克风主要用于处理语音信号,同时阵列麦克风的拾音范围都有限,因此,声源大都位于麦克风阵列近场范围内。这使得传统阵列处理,如雷达、声纳等,所用的平面波前远场模型不再适用,必须使用更为精确的球面波前模型[5]。球面波前模型必须考虑由于传播路径不同所带来的幅度衰减的不同,即除了信号的到达方向外,还需要考虑声源与阵列之间的距离。所以,进行麦克风阵列研究,必须建立适用于麦克风阵列的近场模型。

3.2 阵列宽带信号的处理

传统的阵列处理的信号一般是窄带信号。阵元之间接收到的信号的时延和相位差主要由载波确定。在麦克风阵列处理中,信号没有经过调制,也没有载波由于语音信号的最高频率和最低频率之比很大,这导致相同的时间延迟却有不同的相位差,阵元之间接收到的信号的时延和相位差由信号源的特性来决定。麦克风接收到的语音信号频率一般在300 3000Hz之间,阵列之间的时延和相位差与信号源的频率关系密切。因此,麦克风阵列处理的信号可以看成是一个宽带信号,这使得阵列处理更加困难。

3.3 非平稳信号的处理

传统的阵列处理的接收信号一般为平稳信号,而麦克风阵列中的接收信号为非平稳的语音信号。语音信号可以看成是在20ms ~40ms的时间内是近似平稳的,即语音信号具有短时平稳性。结合上面的宽带情况,麦克风阵列处理一般先把接收信号经过一个短时傅立叶变换,求出其短时谱,然后在频域进行处理。每一频率对应一http://wWw.LWlm.Com个相位差。麦克风阵列的信号处理是将宽带信号在频域上分成多个子带,对每一个子带应用传统的窄带处理,从而得到接收信号的空间谱。

3.4 混响的影响

传统的阵列信号处理中,噪声和信源通常是不相干的.而麦克风阵列多位于室内等较封闭的环境中,除了环境噪声和其他声源的影响外,声源本身在室内的混响也会对准确定位造成影响。

四、结束语

麦克风阵列信号处理是数字信号处理的一个新领域,具备许多传统阵列信号处理无法比拟的优势,是目前国内外的研究热点。但其在低信噪比或强混响的环境下,很多算法的性能都不是很理想,如TDOA,时延的估计精度会受到采样频率的限制。尽管许多方法试图通过插值来提高估计精度,但是这样的插值只提供了一种平滑的方法,并没有提高时间分辨率。所以期待能有一种更加精确的时延估计方法,使得TDOA估计不受采样频率的限制。对于实际的定位系统而言,稳健的时延估计将为下一步精确的定位奠定基础。

庞大的运算量也限制了许多算法在实时定位系统中的应用,如music算法,如何提高在低信噪比环境下的性能与定位系统的抗噪声能力,在复杂度与性能之间取得折衷,将是下一步的研究工作。相信随着研究的不断深入,麦克风阵列信号处理也必定会具备越来越广阔的应用前景。

展开阅读全文

页面更新:2024-03-30

标签:论文   声学论文   声学   声源   阵列   麦克风   相位差   算法   关键技术   频率   语音   模型   信号   空间

1 2 3 4 5

上滑加载更多 ↓
推荐阅读:
友情链接:
更多:

本站资料均由网友自行发布提供,仅用于学习交流。如有版权问题,请与我联系,QQ:4156828  

© CopyRight 2008-2024 All Rights Reserved. Powered By bs178.com 闽ICP备11008920号-3
闽公网安备35020302034844号

Top